Machine Learn - Aprendizaje Automático (Parte 1)

6 December 2016 07:02 PM por Eduardo García Martín

Ciudad inteligente

El gran impulso tecnológico al que solemos referirnos bajo el término Big Data ha revolucionado el entorno empresarial. Existe una demanda generalizada de sistemas con una inteligencia avanzada (IA), equivalente a la de un humano, que sean capaces de procesar esos datos. Esto está ocurriendo en prácticamente todos los sectores, pues es rara la actividad empresarial o de la administración pública que no se pueda beneficiar de un análisis inteligente y automatizado de los datos.

 

El valor de la información: la fiebre de los datos o la fiebre del nuevo ORO...

 

 

Una vez que las empresas disponen de los datos y los sistemas capaces de procesarlos, es el momento de entrar de lleno en la siguiente fase: la comprensión de los datos, la adquisición del conocimiento y la extracción del valor. A pequeña escala esto es algo que tradicionalmente hacemos los humanos, accedemos a los datos, los interpretamos usando nuestro cerebro y tomamos decisiones supuestamente inteligentes. Sin embargo, cuando hablamos de gigabytes, terabytes o incluso pentabytes de información, junto con la necesidad de tomar decisiones en escalas temporales del orden de los milisegundos, los humanos estamos literalmente fuera de toda posibilidad.

 

Hoy en día multitud de productos y servicios, así como las estrategias de marketing que los envuelven, dependen de que las máquinas realicen de forma automática tareas como leer páginas web (con una excelente comprensión lectora), reconocer los rostros que aparecen en las imágenes publicadas en redes sociales, comprender la emoción contenida en el tono de voz de una conversación telefónica, contestar a las preguntas de un cliente en un chat, entender la dinámica y los motivos de los movimientos geográficos de las personas, predecir el gasto energético de una edificación o industria, inferir qué películas o canciones gustarán más a cada persona, recomendar la dieta y el ejercicio más saludable para cada persona en función de su estado actual de salud y su genotipo, etc.

 

No tenemos más remedio que recurrir a máquinas y además necesitamos que estas máquinas sean capaces de interpretar los datos, comprenderlos y sacar conclusiones de forma inteligente. En otras palabras, necesitamos sistemas cognitivos artificiales, cerebros hechos de hardware y software, capaces de tomar decisiones por nosotros, capaces de realizar millones de tareas diferentes que en el pasado sólo podían hacer los humanos.

 

 

Así como la inteligencia en los humanos viene de la experiencia, requerimos que las máquinas aprendan de los datos...

 

Necesitamos que las máquinas sean capaces de auto-programarse, en otras palabras, queremos máquinas que aprendan de su propia experiencia. La disciplina del Aprendizaje Automático (Machine Learning) se ocupa de este reto y gracias a la tormenta perfecta en la que nos acabamos de adentrar todos los gigantes de Internet han entrado de lleno en el mundo del aprendizaje automático, ofreciendo servicios en la nube para construir aplicaciones que aprenden a partir de los datos que ingieren.

 

Machine Learning supervisado y no supervisado…

 

El machine learning se divide en dos áreas principales: aprendizaje supervisado y aprendizaje no supervisado. Aunque pueda parecer que el primero se refiere a la predicción con intervención humana y la segunda no, estos dos conceptos tienen más que ver con qué queremos hacer con los datos.

 

Entender los algoritmos de aprendizaje es fácil si nos fijamos en cómo aprendemos nosotros mismos desde niños. El aprendizaje por refuerzo engloba un grupo de técnicas de aprendizaje automático que a menudo usamos en los sistemas artificiales. En estos sistemas, al igual que en los niños, las conductas que se premian tienden a aumentar su probabilidad de ocurrencia, mientras que las conductas que se castigan tienden a desaparecer.

 

Este tipo de enfoques se denominan aprendizaje supervisado, requiere de la intervención de los humanos para indicar qué está bien y qué está mal. En muchas otras aplicaciones de la computación cognitiva los humanos, aparte del refuerzo, también proporcionan parte de la semántica necesaria para que los algoritmos aprendan. Por ejemplo, en el caso de un software que debe aprender a diferenciar los diferentes tipos de documentos que recibe una oficina, son los humanos los que inicialmente han de etiquetar un conjunto significativo de ejemplos para que posteriormente la máquina pueda aprender.

 

Por otro lado, el aprendizaje no supervisado usa datos históricos que no están etiquetados. El fin es explorarlos para encontrar alguna estructura o forma de organizarlos. Por ejemplo, es frecuente su uso para agrupar clientes con características o comportamientos similares a los que hacer campañas de marketing altamente segmentadas.

 

 

Para llevar a cabo un buen aprendizaje es necesario considerar todos los factores que a este le rodean, como la sociedad, la economía, la ciudad, el ambiente, el lugar, etc. Por lo tanto, es necesario empezar a tomar diversas medidas para lograr un aprendizaje adecuado, y obtener una automatización adecuada del aprendizaje. Así, lo primero que se debe tener en cuenta es el concepto de conocimiento, que es el entendimiento de un determinado tema o materia en el cual tu puedas dar tu opinión o punto de vista, así como responder a ciertas interrogantes que puedan surgir de dicho tema o materia.

 

En un próximo artículo, continuaremos con este interesante y apasionante tema. Hasta entonces.

Escrito por:


Eduardo García Martín

Edificios inteligentes

Sistemas HVAC

Construcción sostenible

Ciudades inteligentes